Nil-clean Companion Matrices

نویسنده

  • SIMION BREAZ
چکیده

The classes of clean and nil-clean rings are closed with respect standard constructions as direct products and (triangular) matrix rings, cf. [12] resp. [4], while the classes of weakly (nil-)clean rings are not closed under these constructions. Moreover, while all matrix rings over fields are clean, [12] when we consider nil-clean rings there are strongly restrictions: if a matrix ring over a division ring F is nil-clean then F has to be isomorphic to F2, [11]. It can be useful to know the (nil-)clean elements in some rings which are not (nil-)clean. For instance, strongly clean matrices (i.e. they have a decomposition r = u + e such that eu = ue) over commutative local rings are studied in [7]. In particular, it would be nice to characterize nil-clean elements in matrix rings over division rings. For the case of strongly nil-clean elements (i.e. they have a decomposition r = e + n such that en = ne) we refer to [10, Theorem 4.4]. From this result we conclude that an n × n matrix over a division ring D is strongly nil-clean if and only if its characteristic polynomial has the form X(X − 1). For other studies of (nil-)clean elements in various rings we refer to [2] and [6]. Since in the proofs of the fact that the matrix ring Mn(F ) over the field F (resp. F = F2) is (nil-)clean the Frobenius (rational) normal form is used, it is useful to know when a companion matrix is nil-clean. In the main result of the present paper (Theorem 6) we characterize companion matrices over fields which are nil-clean. Moreover, it is proved that all these matrices have nil-clean like decompositions: for every polynomial χ of degree n such that the coefficient of X is 0, all nil-clean matrices can be decomposed as A = E + B where E is an idempotent and B is a matrix whose characteristic polynomial is χ. In fact the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nil-clean matrix over a UFD

 In this paper we characterize all $2times 2$ idempotent and nilpotent matrices over an integral domain and then we characterize all $2times 2$ strongly nil-clean matrices over a PID. Also, we determine when a $2times 2$ matrix  over a UFD is nil-clean.

متن کامل

Strongly nil-clean corner rings

We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings‎, ‎then $R/J(R)$ is nil-clean‎. ‎In particular‎, ‎under certain additional circumstances‎, ‎$R$ is also nil-clean‎. ‎These results somewhat improves on achievements due to Diesl in J‎. ‎Algebra (2013) and to Koc{s}an-Wang-Zhou in J‎. ‎Pure Appl‎. ‎Algebra (2016)‎. ‎...

متن کامل

A note on uniquely (nil) clean ring

A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.

متن کامل

E-Clean Matrices and Unit-Regular Matrices

Let $a, b, k,in K$ and $u, v in U(K)$. We show for any idempotent $ein K$, $(a 0|b 0)$ is e-clean iff $(a 0|u(vb + ka) 0)$ is e-clean and if $(a 0|b 0)$ is 0-clean, $(ua 0|u(vb + ka) 0)$ is too.

متن کامل

Commutative Nil Clean Group Rings

In [5] and [6], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short article we characterize nil clean commutative group rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015